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ABSTRACT 

A theore t ica l  dimensionless correlation f o r  the  vaporization times of d i scre te  l i qu id  masses i n  the 
Leidenfrost s t a t e  is presented and ver i f ied  experimentally with data i n  the l i t e r a tu re .  The correlation 
is presented as a s ingle  curve r e l a t ing  a dimensionless vaporization time t o  a dimensionless i n i t i a l  
l i qu id  volume. The correlation works w e n  for  the  entire gamut of i n i t i a l  l i qu id  volumes from spherical  
drops t o  large pancaked blobs f o r  which experimental data ex is t .  

AUSZW 

Eine theoretische dimensionslose Beziehung fiir die Verdunstungszeiten d iskre te r  f l l 'ssiger Massen i m  
Leidenfrostzustand, d ie  i m  Versuch n i t  Angaben i m  Schrifttum iiberpriift wurde, wird angegeben. 
Beziehung zeigt s ich  a l s  eine Einzelkurve des Verhgltnisses zwischen e iner  dimensionslosen Verdunstungszeit 
und einem dirnensionslosem flGssigem Anfangsvolumen. Die Beziehung i s t  anwendbar auf dem ganzen Bereich 
fl l 'ssiger Anfangsvolumen, von sphiirischen Tropfen bis zu flachkugeligen Flecken, fiir d ie  experimentelle 
Ergebnisse vorhanden sind. 

Die 

INTROWCPION 

If a quantity of l iqu id  is placed on a suf f i -  
c i en t ly  hot  p la te ,  the l iqu id  w i l l  evaporate i n  
the  immediate v i c in i ty  of the p la te  a t  a r a t e  
suf f ic ien t  t o  support the l iqu id .  This phenomenon 
is re fer red  t o  i n  the l i t e r a t u r e  as  e i ther  Leiden- 
f ros t  boil ing or  f i lm boiling. 
broad categories of general i n t e re s t  that experi- 
mental work f a l l s  i n to  (Fig. 1): 

There are two 

(1) A continuous or i n f i n i t e  amount of l iqu id  

( 2 )  Discrete or f i n i t e  amounts (drops) of 

The d iscre te  range (Figs. l ( a )  t o  ( e )  ) has 

Figure 1 

res t ing  on the p l a t e  

l iqu id .  

many in te res t ing  problems associated with it that 
a r e  absent from the continuous range. 
shows a ser ies  of possible s t a t e s  that belong t o  
the  d iscre te  and the continuous ranges. 
t i o n a l  important variables i n  the  d iscre te  range, 
which a r e  not associated with the continuous 
range, a r e  the volume of the l iqu id  mass and the  
drop shape; t h a t  is, the experimentalist working 
i n  the d iscre te  range has one additional independ- 
en t  variable, the volume of the l iqu id  placed on 
the  p l a t e .  For very small volumes (Fig. l ( a ) )  the  
shape of the drop is nearly spherical. With 
l a rge r  volumes (Fig. l ( b ) )  the  drop tends t o  f l a t -  
t en  out i n to  a disk. The thickness of la rge  
masses of l iquid,  ca l led  extended drops, tends 
toward an asymptotic value (Fig. l ( c ) ) .  

The addi- 

For very 
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laxge volumes, bubble breakthrough starts occur- 
r i ng  (Figs. l ( d )  and ( e ) ) .  

c r e t e  boiling range a re  examined i n  [1 t o  111.* In 
par t icu lar ,  Pate1 and Be l l  [TI show that bubble 
breakthrough (Figs. l ( d )  and ( e ) )  is consistent 
with the prediction of i n s t ab i l i t y  theory f o r  sub- 
merged surface film boiling. A numerical proce- 
dure f o r  calculating the  vaporization times of 
spherical  drops (Fig. l ( a ) )  i s  presented i n  181, 
while a theore t ica l  analysis of heat t ransfer  t o  
la rge  and extended drops (Figs. l ( b )  and ( e ) )  is 
presented i n  (51 and [91. Recently, Baumeister, 
Hendricks and H a m i l l  showed that metastable 
Leidenfrost f i lm boiling (Figs. l ( a )  t o  ( c ) )  can 
occur f o r  p la te  temperatures as iow as t ie  satu- 
r a t ion  temperature of the l iqu id  [ l l ] .  

t i on  along with experimental confirmation t h a t  
allows an a p r i o r i  prediction of the  heat-transfer 
area, heat-transfer coefficient,  and vaporization 
time f o r  any f lu id ,  w a l l  temperature, and l iqu id  
volume. 

%ny of the problems associated with the  d is -  

This paper presents a theore t ica l  correla- 

METHOD OF ANALYSIS 

The vaporization time of a d i scre te  l iqu id  
drop i n  Leidenfrost boil ing on a f la t  p la te  can be 
found by a d i r ec t  integration of the  interface 
energy balance: 

The functional form of the heat-transfer coef- 
f i c i e n t  w i l l  be that presented i n  [5 and 91. In 
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these references, a cy l indr ica l  model 
predict  the heat transfer.  From [91 

is  used t o  

l m  
;? 
K) 
I w 

where the properties a re  evaluated a t  
temperature, 

( 2 )  

the fi lm 

L, = -!- = geometry fac tor  ( 3 )  
$222 

and 

( 4 )  

The heat-transfer expression given by Equa- 
t i on  ( 2 )  is an ana ly t ica l  expression fo r  the  heat- 
t ransfer  coefficient that would ex i s t  i f  no radia- 
t i on  from the  p la te  t o  the drop existed; however, 
radiation is an important heat-transfer mechanism 
t o  consider, especially f o r  high p l a t e  tempera- 
tures. Therefore, the  t o t a l  heat-transfer coef f i -  
c i en t  t o  be used in  the integration of equation 
(1) is given by 

" r=-  hC 
f ( 5 )  

where f i s  the rad ia t ion  correction fac tor .  The 
rad ia t ion  correction fac tor  f i s  presented i n  
the Appendix. For convenience and mathematical 
simplicity,  Equation (1) is integrated by using a 
conductive heat-transfer coefficient ra ther  than 
the t o t a l  heat-transfer coefficient.  After Equa- 
t i on  (1) is integrated, a mean value of the  radia- 
t i v e  correction fac tor  f is used t o  give the 
cor rec t  vaporization t i m e .  

the heat-transfer area A and effective geometry 
fac tor  Le i n  the heat-transfer expression 
(Eq. ( 2 ) )  a r e  unknowns. Thus, the problem of 
determining these quant i t ies  is of paramount impor- 
tance in  computing the vaporization time. A de- 
t a i l e d  method f o r  computing the shape of the l iqu id  
drop by solving the Iaplace capi l la ry  equation (see 
Fig. ( 2 )  ) is presented i n  [ 41 : 

Equation (1) s t i l l  cannot be integrated since 

The Iaplace capi l la ry  equation r e l a t e s  the 
surface tension forces and the pressure difference 
across the surface of a drop. From the drop shape, 
the geometric parameters A and L, can be deter- 
mined. 

I n  summary, the  vaporization time f o r  a l iqu id  
drop of volume V can be calculated by integration 
of the  in te r face  energy balance given by Equation 
(1). 
t h i s  integration a re  as  follows: 

The procedural s teps  necessary t o  perform 

(1) Solve Equation (6 )  t o  determine the shape 
of the  l i qu id  drop f o r  a given l iqu id  volume 
V i n  tenas of the  basic f l u i d  properties. 

(2)  Determine the heat-transfer area and 
( 3 )  Substi tute the value of Le in to  the heat- 

t ransfer  equation (Eq. ( 2 ) )  thereby giving an 
expression fo r  the  conductive heat-transfer 
coef f ic ien t  i n  terms of the basic f l u i d  
properties and the drop volume V. 

A 

Le. 

( 4 )  Substi tute the functional form of and 
in to  Equation (1) and integrate for  the 

t o t a l  vaporization time t, which assumes 
only a conductive and convective heat- 
t ransfer  mode t o  the drop. 

( 5 )  Apply a mean value of the radiation cor- 
rec t ion  fac tor  f (presented i n  the Appen- 
d ix)  t o  the  expression f o r  the conductive 
vaporization time t o  give the  ac tua lvapor-  
ization time. 

DROP SHAPE 

A l i qu id  drop not wetting i t s  supporting sur- 
face, as i n  Leidenfrost f i lm boiling, has the gen- 
e r a l  shape depicted i n  Figure 2. The shape can be 
found by solution of the Laplace capi l la ry  equation 
(Eq. ( 6 ) ) .  Equation (6 )  was nondimensionalized and 
transformed in to  a coupled pa i r  of ordinary non- 
l inear  d i f f e ren t i a l  equations, which r e l a t e  the  
radius of curvature and the pressure difference a t  
any point on the surface of the drop. The coupled 
equations were solved by a numerical integration on 
an IEM 7094 d i g i t a l  computer. 
transformation and numerical integration of the 
equation can be found in  [4] along with an experi- 
mental ver i f ica t ion  of the numerical r e su l t s .  

For a given drop volume, the maximum drop ra- 
dius and an average drop thickness 2 ,  defined by 
the equation 

The de ta i l s  of the 

( 7 )  

were determined from the numerical solutions. 

curve i n  Figure 3 .  The dimensionless groups sham 
i n  Figure 3 are defined as  follows: 

The numerical r e su l t s  a r e  shown as a dashed 

From the universal  curve, the average drop 
thickness and maximum radius can be determined pro- 
vided the surface tension and density of the l i qu id  
a re  known. For purposes of calculation, t h i s  curve 
is broken in to  three asymptotic ranges. 

Extended Drop Domain 

The extended drop domain i s  defined a s  the  
domain i n  which the  thickness of the drop is in- 
dependent of drop volume. 
drops the universal  curve (Fig. 3 )  approaches a 
slope of 3 ,  which agrees with the physical observa- 
t ions  that the thickness of the drop approaches a 
constant asymptotic value. From Figure 3 the  ex- 
tended drop region is defined fo r  the domain of ? 
where 

For extended l iqu id  

v* > 155 (10) 

The average drop thickness i n  t h i s  domain is given 
by 
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M 
I w 

This equation is independent of the  volume of the 
drop and provides a method f o r  computing the  asymp- 
t o t i c  drop thickness. 

In  addition, according t o  s t ep  2 i n  the sec- 
t ion  METHOD OF ANALYSIS, the heat-transfer area f o r  
large cy l indr ica l ly  shaped extended drops can be 
defined as  

Therefore, when Equation (ll) is substi tuted in to  
Equation (12) , the  heat-transfer area of an extended 
l iqu id  drop is 

Large Drop Domain 

The la rge  drop domain is defined as the domain 
where the drop i s  disk-like in  shape and where the  
thickness var ies  as a function of its volume, a s  
compared with the  extended drop whose thickness 
remains constant. The Lsrge drop region ex is t s  i n  
the volume range where 

0.8 < ? 5 155 (14)  

as  can be seen i n  Figure 3. The average drop 
thickness i n  t h i s  region i s  

In  the same manner as i n  the  extended mass 
region, the heat-transfer area i n  th i s  region is 
a l so  defined by Equation (12). 
t i on  (15) in to  Equation (E) gives f o r  the  heat- 
t ransfer  area 

Substi tuting Equa- 

This equation is applicable fo r  drops intermediate 
i n  s ize ,  between small spherical  drops and extended 
drops of constant thickness. 

smal l  Drop Dorcain 

When small quantit ies of l iqu id  are in  f i l m  
bo i l ing  on a hot pla te ,  t he i r  shape is nearly 
spherical .  Thus, the  average drop thickness de- 
fined by Equation (7)  goes t o  a l imiting value for 
small spherical  drops: 

But f o r  a sphere 

(17) 

Therefore, dividing Equation ( 1 7 )  by Equation (18) 
gives f o r  small drops 

1” = v+ = 0.83 

A s  can be seen i n  Figure 3, the  universal  
curve approaches t h i s  asymptotic value of 0.83. 
From Figure 3, the small drop domain is taken t o  
e x i s t  i n  that region where 

v” 5 0.8 

nus ,  i n  t h i s  region the drop thickness i s  given by 

= 0.83 vi13 ( 2 1 )  

The heat-transfer coef f ic ien t  (Eq. ( 2 ) )  de- 
rived in  [9] w a s  based on the assumption t h a t  a 
uniform gap existed beneath the drop; however, t h i s  
is c lear ly  not the case when a small drop is r e s t -  
ing on the surface. Consequently, the e f fec t ive  
heat-transfer area is expected t o  be greater than 
the  projected area of the sphere but l e s s  than the 
surface area of the lower half of the sphere; t h a t  
is J 

f i r2  < A < 2nr2  ( 2 2 )  

Therefore, as  an engineering a p p r o x h t i o n ,  
the  e f fec t ive  heat-transfer area of the sphere w a s  
taken as the average of the  projected and surface 
areas; t ha t  is, 

2 
= 1.5 n r 2  A = n r 2  + 2 n r  

2 

The e f f ec t  of the preceding approximation was 
t es ted  against  the experimental data of Gottfried 
[2] and is reported i n  a l a t e r  section en t i t l ed  
UNIVERSAL VAPORIZATION TfME PROFILE. 

For a sphere, 

as the e f fec t ive  heat-transfer area of a sphere. 

HEAT-TRANSFER COEFFICIENTS 

Extended Drop Domain 

Substi tuting the value of 2 for large drops 
(Eq. (ll)) in to  Equations ( 2 )  and (3) gives 

for  the domain defined by Equation (10).  
ingly, the heat-transfer coefficient predicted in 
t h i s  case is independent of gravity. Physically, 
therefore, the  gap thickness under an extended 
l iqu id  drop is independent of the grav i ta t iona l  
environment. In a larger grav i ta t iona l  f i e ld ,  
however, the  drop thickness w i l l  be thinner and 
the heat-transfer area larger,  thereby giving rise 
t o  shorter vaporization times i n  la rge  gravita- 
t i ona l  f ie lds .  

Surpris- 



4 . 
Note that the preceding observation does not 

apply t o  the  near zero-gravity case, since the drop 
would not obtain an equilibrium position above the  
p l a t e  because of the reac t ive  force of the gener- 
ated vapor. 

Large Drop Domain 

Substi tuting the value of 1 f o r  large drops 
and Equation (15) in to  Equations ( 2 )  and (3) gives 

3 * l / 2p l /2p  1 1 2  

hc = 1 . 0 7 5 t  A AT pV2I3 ' gc )"' (27) 

for  the  domain defined by Equation (14).  

Small Drop Domain 

Equation (211, in to  Equations ( 2 )  and (3 )  gives 
Substi tuting the  value of 1 fo r  small drops, 

f o r  the domain defined by Equation (20).  Note that 
the heat-transfer coef f ic ien t  i n  the small drop 
domain i s  independent of surface tension because of 
the f a c t  that a l l  drops i f  small enough a re  spheres 
independent of the surface tension. 
fac tor  L, appearing in  the  heat-transfer coeffi-  
c i en t  is a l so  independent of surface tension f o r  
spherical  drops. 

The geometry 

VAPORIZATION TIMES 

small Drops 

The t o t a l  vaporization time of a l iqu id  drop 

Substi tuting Equations (25) and ( 2 8 )  in to  
can be found by a d i r ec t  integration of Equation 
(1). 
Equation (l), integrating, and solving f o r  the 
vaporization times give 

Y t 

the dimensionless t o t a l  vaporization time for  the 
small drop region is given by the equation 

f o r  the domain defined by Equation (20 ) .  

h g e  Drops 

Substi tuting Equations (16) and (27) in to  
Equation (1) , evaluating the lower integration 
l i m i t s  with Equations (14) and ( 33) , applying 
the  rad ia t ive  correction factor,  and introducing 
the nondimensional variables defined by Equa- 
t ions  (8) and (32) give 

t* = 2.23 V*l l3  - 0.97 (34) 

fo r  the domain defined by Equation (14) .  

Extended Drops 

Substi tuting Equations (13) and (26) i n t o  
Equation (l), evaluating the lower integration 
l imi t s  with Equations (10) and (34), applying the 
rad ia t ion  correction factor,  and introducing the  
dimensionless variables defined by Equations (8)  
and (32) give 

t* = 4.52 V * l l 4  - 5 (35) 

f o r  the domain defined by Equation (10). 

Real Time Plo ts  

Figures 4 and 5 present a comparison of the 
theore t ica l  and experimental t o t a l  vaporization 
times f o r  benzene in  terms of r e a l  time and volume, 
as calculated from the equations presented i n  the 
previous sections. 

Theory and experiment a re  i n  good agreement 
for  small drops (Fig. 4 ) ,  fo r  la rge  and extended 
drops (Fig. 51, and even for  drops with bubble 
breakthrough (10-ml drop). 

for  the  conductive vaporization t i m e .  
Thus, according t o  the  def in i t ion  given t o  the 

rad ia t ion  correction fac tor  of Equation ( A l )  i n  the 
Appendix, the ac tua l  t o t a l  vaporization time is 
given by 

Rewriting the Equation (30) i n  terms of V* define3 
by Equation ( 8 )  gives 

t = 1 . 2 1  fV*5/lz (31) 

I f  a dimensionless t o t a l  vaporization time t" 
is defined as 

UNIVERSAL VAPORIZATION TIME PROFILF: 

A p lo t  of t* a s  a function of V* over the 
complete range of independent variable ? is 
sham i n  Figure 6. 
and 61 have been plotted i n  terms of the dimension- 
l e s s  variables. The universal  r e l a t ion  cor re la tes  
quite wel l  the available vaporization data over the 
en t i r e  gamut of l iqu id  volumes. 

Note t h a t  no experimental data found i n  the 
l i t e r a t u r e  f a l l  i n  the small drop range defined by 
V* < 0.6; however, Gottfried's  experimental data 
came very close t o  f a l l i ng  i n  t h i s  range. 

Even though none of the i n i t i a l  l iqu id  volumes 
reported i n  the l i t e r a t u r e  f a l l  i n to  the small drop 
regime (V* < 0.8) much of Gottfried's  data i s  on 
the borderline of t h i s  l imi t  (1.5 < Vx < 5.5). 
Calculations show that fo r  the smallest 
reported by Gottfried, the drop spends roughly 

Some of the data i n  [1,2,4, 



75 percent of its l i f e  i n  the small drop domain. 
The computed vaporization times fo r  Gottfried's  
data a re ,  therefore, very dependent on the value of 
the heat-transfer coefficient and area computed fo r  
the small drop domain. The ver i f ica t ion  of the 
heat-transfer area approximation (Eq. (23) ) i s  
based on the agreement of calculated data with 
Gottfried's  data, a s  sham i n  Figure 4. 

Two empirical correlations derived from dimen- 
s iona l  analysis fo r  the vaporization times of small 
drops a r e  discussed i n  [ z  and 81. In one corre- 
l a t ion  Fick's l a w  diffusion coef f ic ien t  appears; 
however, the diffusional dependency predicts an 
in f in i t e  evaporation time fo r  experiments conducted 
i n  a saturated vapor atmosphere where there i s  no 
diffusion [E, p. 376 and 4, p. 81. This is con- 
t r a ry  t o  fac t .  
predicts trends i n  agreement with the present cor- 
r e l a t ion  (Eq. (29)), although the functional de- 
pendency of the  parameters is d i f fe ren t .  

The other empirical correlation 

DISCUSSION OF RESULTS AND CONCLUDING REM4RKS 

The generalized correlation (Fig. 6 )  f o r  pre- 
diction of vaporization times of discrete l iqu id  
masses presented in  th i s  paper is in  good agreement 
with experimental data. Moreover, the va l id i ty  of 
the cor re la t ion  with respect t o  the volume of the  
d iscre te  l iqu id  drops placed on the hot surface 
applies over the whole spectrum of discrete s t a t e s  
observed experimentally ( Figs. 1( a ) t o  ( e ) ) . 
and ( e )  seems t o  have a re la t ive ly  minor e f fec t  on 
heat t ransfer .  On the average, a blob of l iqu id  in  
the extended drop region with bubble breakthrough 
appears t o  be equivalent t o  a f l a t  disk. In  a l l  
probability, bubble breakthrough does not a l t e r  the 
heat-transfer area.  The presence of holes merely 
increases the perimeter of the bubbly l iqu id  mass 
while the area remains constant. 
ness beneath the drop remains f a i r l y  constant, the 
heat-transfer coefficient w i l l  not be a l te red  very 
much. The ne t  r e s u l t  appears t o  be that the  t o t a l  
flux of heat input t o  the bubbly drop i s  nearly 
equal t o  t h a t  calculated by assuming no bubble 
breakthrough. This is not the case for a confined 
l iqu id  (Fig. l ( f ) )  since bubble domes decrease the 
effective heat-transfer area. 

The ve r t i ca l  s ca t t e r  of the data points shown 
i n  Figure 6 appears t o  r e s u l t  from the experimental 
uzxertzbtie. ;  i n  the measured volume, vaporization 
time, and surface temperature. Most important, the 
surface temperature is reparted as a constant value 
even though the ac tua l  p la te  temperature varies be- 
cause the drop cools the p la te  [6, p. 331. 
fore,  the experimental spread i n  the ac tua l  data 
( see  Figs. 4 and 5 )  w i l l  be, of course, mirrored i n  
the cor re la t ion  sham i n  Figure 6. 

The temperature functionali ty i n  the universal 
vaporization time re la t ions  adequately correlated 
the data as seen by the r e a l  time plots (Figs. 4 
and 5 )  j consequently, inverting the correlation 
(i.e., computing surface temperatures f r o m  observed 
evaporation times) should give f a i r l y  accurate 
r e su l t s .  

The g o d  agreement with theory tends t o  sub- 
s t an t i a t e  the use of heat-transfer areas obtained 
by solving the  Iaplace capi l la ry  equation for an 
isothermal drop. 

Bubble breakthrough as shown i n  Figures l ( d )  

If the  gap thick- 

There- 

5 

NOMENCIA'IURE 

area, cm2 
spec i f ic  heat of vapor a t  constant pres- 

radiation correction fac tor  
acceleration of gravity, cm/secZ 
conversion factor,  

heat-transfer coefficient,  

calculated conductive heat-transfer coef- 

average value of 

ac tua l  conductive heat-transfer coeffi-  

rad ia t ive  heat-transfer coefficient,  

t o t a l  heat-transfer coefficient,  

thermal conductivity of vapor, 

equivalent geometry fac tor  ( see  Eq. ( 3 )  ) , 
average calculated drop thickness (see 

sure, tal/(@;)(%) 

g ) (  cm)/( m e  ( see2 

ca l / (  see) (  em2) ( OK) 

f i c i en t ,  tal/( sec ) (cmz )(OK) 

cal/(sec)(cm2)(oK) 

c ien t ,  tal/( see) (  cmz)( O K )  

tal/( sec )( em2 )(OK) 

cal/(sec)(cmz)(OK) 

ca l / ( sec) (  cm)( OK) 

cm 

he during drop l ifetime, 

Eq. (711, cm 
dimensionless drop thickness ( see  Eq. ( 9 ) )  
s t a t i c  pressure, dynes/cm2 
pressure difference across surface, 

radius, cm 
maximum radius of drop, cm 
rad i& of curvature of drop surface, cm 
temperature, 9c 

t o t a l  vaporization time of drop, sec 
dimensionless t o t a l  vaporization time of 

t o t a l  vaporization time of drop considering 

drop volume, cu cm 
i n i t i a l  volume of l iqu id  placed on hot 

plate,  cu cm 
dimensionless drop volume (see Eq. ( 8 ) )  
distance from plate,  cm 
gap thickness beneath drop, cm 
l iqu id  emissivity 
heat of vaporization, cal/g 
modified heat of vaporization ( see  

absolute viscosity of vapor, poise 
density, g/cm3 
surface tension, mes /cm 
Boltzmann constant, 4.876XLO-' 

ciynes/cmZ 

q q  - Ts, OK 

drop (see Eq. ( 3 2 ) )  

conduction ( see  Eq. ( 2 9 ) )  

zq. (4)), ce1;i; 

k tal//( mz ) (hr ) ( OK4) 

Subscripts : 

2 l iqu id  
S evaluated a t  saturation conditions 
V vapor 
W w a l l  
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APPENDIX - EFFECT OF RADIATIVE TRANSPORT ON VAPORIZATION TIMES 

M 
I w 

The conductive t o t a l  vaporization time 
given by Equation (29) has been calculated by 
assuming that a l l  the  heat i s  transported by con- 
duction and convection in  the th in  vapor film. R a -  
d ia t ive  transport  has been neglected en t i re ly .  
When radiation becomes appreciable a t  about 450' C ,  
the theore t ica l  vaporization times w i l l  be high. 

For w a l l  temperatures up t o  about 550' C the 
following correction fac tor  t o  tc is suggested: 
l e t  t equal the vaporization time when radia- 
t i on  is present. Then, l e t  f be defined by the 
equation 

tc 

t = f tC ( A l l  

where f is a factor l e s s  than 1 tha t  accounts f o r  
radiation. 

The factor f is a l s o  equal t o  the mean value 
of t he  r a t i o  of the heat-transfer coefficient ob- 
tained by neglecting radiation t o  the coefficient 
obtained by retaining the rad ia t ion  term. By ex- 
tension of the analysis i n  [9, p. 13, Eq. (4511 the  
following equation can be shown t o  be va l id  in  t h i s  
temperature range: 

where hr is the  radiation heat-transfer coeffi-  
c ien t .  For the f l a t  disk geometry 

(A31 

The emissivity of the  l iqu id  i n  the tempera- 
tu re  range being considered can be taken con- 
veniently as equal t o  one i f  data a re  lacking. 
transmissivity of l i qu id  layers greater than a few 
millimeters i n  depth is ef fec t ive ly  zero, and the  
r e f l e c t i v i t y  of l iqu ids  f o r  wavelengths i n  the 
inf ra red  i s  quite smll [13, p. 3711. Hence, the  
emissivity is very nearly one. 

a t ion  equation because the  r a t i o  of the  drop t o  
p l a t e  a rea  is ef fec t ive ly  zero [2, p. 141. The 
bottom surface of the cirop "sees;" the ec t i r e  pIP+ej 
hence, the view fac tor  based on the  undersurface 
of the  drop is unity, which leads to-Equation ( A 3 ) .  

The heat-transfer coef f ic ien t  h, should be 
evaluated a t  half  the  i n i t i a l  l iqu id  volume under 
consideration because heat-transfer coef f ic ien t  
h, is a weak function of volume, and hence t h i s  
procedure w i l l  give a reasonable estimate of the 
e f f e c t  of rad ia t ion  over the t o t a l  l i f e  of the 
drop. 

t ransfer  coef f ic ien ts  a r e  not simply additive. 
For small w a l l  temperatures the  equation l inear -  
izes  t o  

The 

The p l a t e  emissivity does not enter the rad i -  

Equation (A2) a l s o  points out that the  heat- 

Note that h, is not the ac tua l  convection 
coef f ic ien t  t ha t  ex i s t s  physically. 
quantity calculated with the assumption that rad i -  

It is a 

a t ion  is  not present. When rad ia t ion  i s  present, 

'z=s 

because of the nonlinear in te rac t ion  of radiation 
and convection-conduction heat transport .  Some 
quantity $ ex i s t s  that does s a t i s f y  the equa- 
t i on  - . - I  aT = & m  

dz 

and i f  t h i s  quantity were known, then 

However, since h, is  given by a simple formula, 
a functional r e l a t ion  of the  form 

$ = f(%,hc) (A81 

is more desirable.  
of Equation (A41, which should not be misconstrued 
a s  a v io la t ion  of t he  addi t iv i ty  of coefficients 
f o r  p r a l l e l  heat-transfer mechanisms. 

This i s  precisely the  content 
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(a) Small drop (b) Large drop (c) Extended drop (flat 
(flat disW. disk, thickness Constant). (spherical). 

(d) Extended drop (flat disk, thickness 
constant, single bubble breakthrough). 

Discrete 
range 

t multibubble breakthrough). 
(e) Extended drop (flat disk, thickness Constant, 

T - 
-Liquid interface Continuous '. 

range 

(1) Film pool boiling (constant liquid head, multibubble 
breakthrough). 

Figure 1. - Film-boiling states of liquid masses. 

Figure 2. - Schematic of nonwetting liquid drop on flat surface. 



Dimensionless drop thickness, 
f = 21v1'3 

Figure 3. - Universal average drop thick- 
ness curve. 
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Figure 5. - Liquid vaporization time against temperature difference for benzene 
(data from Patel and Bell I3 and 73. 
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